Codimension and pseudometric in co-Heyting algebras
نویسندگان
چکیده
منابع مشابه
Codimension and pseudometric in co-Heyting algebras
In this paper we introduce a notion of dimension and codimension for every element of a distributive bounded lattice L. These notions prove to have a good behavior when L is a co-Heyting algebra. In this case the codimension gives rise to a pseudometric on L which satisfies the ultrametric triangle inequality. We prove that the Hausdorff completion of L with respect to this pseudometric is prec...
متن کاملA new characterization of complete Heyting and co-Heyting algebras
We give a new order-theoretic characterization of a complete Heyting and co-Heyting algebra C. This result provides an unexpected relationship with the field of Nash equilibria, being based on the so-called Veinott ordering relation on subcomplete sublattices of C, which is crucially used in Topkis’ theorem for studying the order-theoretic stucture of Nash equilibria of supermodular games. Intr...
متن کاملOn Heyting algebras and dual BCK-algebras
A Heyting algebra is a distributive lattice with implication and a dual $BCK$-algebra is an algebraic system having as models logical systems equipped with implication. The aim of this paper is to investigate the relation of Heyting algebras between dual $BCK$-algebras. We define notions of $i$-invariant and $m$-invariant on dual $BCK$-semilattices and prove that a Heyting semilattice is equiva...
متن کاملProfinite Heyting Algebras and Profinite Completions of Heyting Algebras
This paper surveys recent developments in the theory of profinite Heyting algebras (resp. bounded distributive lattices, Boolean algebras) and profinite completions of Heyting algebras (resp. bounded distributive lattices, Boolean algebras). The new contributions include a necessary and sufficient condition for a profinite Heyting algebra (resp. bounded distributive lattice) to be isomorphic to...
متن کاملModel completion of varieties of co-Heyting algebras
It is known that exactly eight varieties of Heyting algebras have a modelcompletion, but no concrete axiomatisation of these model-completions were known by now except for the trivial variety (reduced to the one-point algebra) and the variety of Boolean algebras. For each of the six remaining varieties we introduce two axioms and show that 1) these axioms are satisfied by all the algebras in th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Algebra universalis
سال: 2010
ISSN: 0002-5240,1420-8911
DOI: 10.1007/s00012-011-0103-x